STUDIES ON THE FORMATION OF MANGANESE MOLYBDATE P. RAJARAM, B. VISWANATHAN, G. ARAVAMUDAN, V. SRINIVASAN AND M. V. C. SASTRI Department of Chemistry, Indian Institute of Technology, Madras 600036 (India) (Received 2 April 1973) #### ABSTRACT The reaction of MoO₃ with various oxides of manganese (MnO, Mn₂O₃, Mn₃O₄ and MnO₂) and with MnCO₃ has been studied in air and nitrogen atmospheres employing DTA, TG and X-ray diffraction methods, with a view to elucidating the conditions for the formation of MnMoO₄. Thermal decomposition of MnCO₃ has also been studied in air and nitrogen atmospheres to help understand the mechanism of the reaction between MnCO₃ and MoO₃. The studies reveal that, whereas MnO, Mn₂O₃ and MnO₂ react smoothly with MoO₃ to form MnMoO₄, Mn₃O₄does not react with MoO₃ in the temperature range investigated (480–600°C). An equimolar mixture of MnCO₃ and MoO₃ reacts in air to yield MnMoO₄, while only a mixture of Mn₃O₄ and MoO₃ remains as final product when the same reaction is carried out in nitrogen. Marker studies reveal that manganese ions are the main diffusing species in the reaction between MoO₃ and manganese oxides that result in MnMoO₄. ### INTRODUCTION Molybdates of transition metals (AMoO₄ where A denotes a divalent transition metal ion) offer an interesting class of materials with considerable potential applications. Studies of their structures¹, catalytic properties², infrared absorption³ and magnetic susceptibility⁴ have been reported in recent years. They are usually obtained by reacting MoO₃ with transition metal oxides AO, A₂O₃ or AO₂ at suitable temperatures^{5,6}. Doyle et al.⁷ have reported the formation of MnMoO₄ by heating mixtures of MoO₃ and MnO₂ or MoO₃ and Mn₂O₃ in the required mole proportion in air at 700°C, while Mamykin and Batrakov8 have obtained it by heating an equimolar mixture of MnCO₃ and MoO₃ in air in the temperature range 600-930°C. That only MnMoO₄ (with Mn in +2 state) is obtained as the final product, irrespective of the oxidation state of manganese in the starting material, indicates that the reaction involves an oxidation-reduction mechanism. The present study concerns the mode of formation of MnMoO₄ by reacting MoO₃ with various oxides of manganese (MnO, Mn₂O₃, Mn₃O₄ and MnO₂) and with MnCO₃. Decomposition of MnCO₃ in air and in nitrogen has also been studied with a view to understanding the nature of MnCO₃-MoO₃ reaction. ### **EXPERIMENTAL** MoO₃ was prepared from ammonium paramolybdate (BDH, AnalaR) by the method given by Palmer⁹. The MnCO₃, MnO₂ and α -Mn₂O₃ used were reagents of certified purity. MnO was obtained by reducing α -Mn₂O₃ in a stream of hydrogen (60 ml/min) at 600°C for 12 h¹⁰. The differential thermal analysis (DTA) curves of the various solid samples were obtained with Netzsch apparatus (Netzsch Gerätebau, GmbH, Seib, West Germany) while the thermogravimetric (TG) studies were carried out with a Stanton Recording Thermobalance, Model HTSM (Stanton Redcroft Ltd., London). The heating rates for the DTA and TG studies were 10 and 6°C min⁻¹, respectively. For studies in inert atmosphere, cylinder nitrogen was used after passing the gas successively through activated charcoal, magnesium perchlorate, and hot copper gauze (350–400°C). The solid products obtained at various stages of reaction were analysed by conventional analytical methods¹¹. The total manganese content was determined by EDTA-titration at pH 10 using Eriochrome Black-T indicator, after reduction of manganese in the higher oxidation states to +2 state using hydroxylamine hydrochloride. Higher oxidation states of manganese (+3 and +4 states) were determined by sodium oxalate-potassium permanganate method. Molybdenum was determined gravimetrically by the oxinate method. # RESULTS AND DISCUSSION The reaction, $MnCO_3 + MoO_3 \rightarrow MnMoO_4 + CO_2$, appears deceptively simple. Samples of $MnCO_3$ and MoO_3 heated in air at $400-600\,^{\circ}C$ for 1-4 h have shown the presence of higher oxidation states of manganese, although prolonged heating gives only $MnMoO_4$. This observation suggests the possibility of an oxidation-reduction mechanism for the formation of $MnMoO_4$. It was thought that a study of the decomposition of $MnCO_3$ itself would provide a clue to the mechanism of $MnCO_3 + MoO_3$ reaction. The thermal behaviour of $MnCO_3$ was therefore studied in air and inert atmospheres by the methods of DTA and TG and the solid products characterised by chemical analysis and X-ray diffraction. The results (Fig. 1 and Table 1) reveal that $MnCO_3$ decomposes in air at $300-400\,^{\circ}C$ to yield MnO_2 (endotherm centred around $400\,^{\circ}C$ in DTA) which subsequently transforms to Mn_2O_3 around $550\,^{\circ}C$ (endotherm in DTA). Thermogravimetric data show that the Mn_2O_3 formed undergoes further weight loss to yield Mn_3O_4 around $860\,^{\circ}C$. These findings on the decomposition of $MnCO_3$ in air are in agreement with those of Paulik and Paulik 12 and Dollimore and $Tonge^{13}$. The decomposition in inert atmosphere (flowing nitrogen, ~ 200 ml/min) of MnCO₃ shows only one endothermic peak around 410 °C in the DTA curve. Chemical analysis and X-ray diffraction of the product obtained at this temperature have shown it to be Mn₃O₄. The fact that only Mn₃O₄ is obtained directly from the decomposition of MnCO₃ in inert atmosphere is in conformity with the results of Westerdahl and Leader¹⁴, who too have obtained only Mn₃O₄, and not MnO as claimed by others^{13,15}, by the decomposition of MnCO₃ in argon atmosphere. Fig. 1. DTA and TG curves of MnCO3 in air and nitrogen. TABLE I THERMAL DECOMPOSITION DATA OF MnCO₃ | Atmos-
phere | Temperature
range (C) | Chemical
analysis data² | XRD d spacings of the solid phaseb | Product
formed | % weight loss | | |-----------------|--------------------------|--|---|----------------------------------|---------------|-------| | | | | | | Ohs. | Calc. | | air | 280-400 | Mn ^t 63.59%
Mn ^{tv} 63.87% | 3.11 vs, 2.40 vs, 2.12 s,
1.63 vs, 1.55 s, 1.40 s. | α-MnO ₂ | 24.30 | 24.37 | | | 500–580 | Mn ^t 69.90%
Mn ^{III} 70.04% | 3.78 w, 2.71 vs, 2.31 s,
2.00 m, 1.85 s, 1.66 vs,
1.44 w, 1.42 m, 1.38 w. | z-Mn ₂ O ₃ | 30.70 | 31.33 | | | 860–890 | Mn ^t 71.87% | 4.90 w, 3.08 m, 2.87 s,
2.48 vs, 2.37 m, 2.21 s,
2.04 m, 1.79 w, 1.57 m,
1.44 w, 1.34 w, 1.28 w, | Mn ₃ O ₂ | 33.20 | 33.65 | | nitrogen | 320-440 | Mn ^c 71.34% | same as above | Mn ₃ O ₄ | 33.50 | 33.65 | ^a Mn^t refers to the total manganese in the solid phase. ^b X-ray diffraction d spacings have been obtained using MoK radiation. The observed d spacings compare very well with those reported for the respective compounds by Moore et al. ¹⁷. The intensity of the lines is denoted as vs = very strong, s = strong, m = medium and w = weak. ## Reaction of MnCO₃ and MoO₃ The DTA and TG results for the reaction between equimolar MnCO₃ and MoO₃ mixtures in air are given in Fig. 2 and Table 2. Chemical analyses and X-ray diffraction data for the intermediates and final products are also summarised in Table 2. The DTA results indicate that MnCO₃ decomposes around 360–400 °C to yield MnO₂ (endotherm I) which subsequently reacts around 520 °C with MoO₃ forming MnMoO₄ (endotherm II). The required weight losses are noted in the corresponding TG curve. Fig. 2. DTA and TG curves of MnCO₃-MoO₃ mixture in air and nitrogen. It is to be noted that the formation temperature of MnMoO₂ ($\sim 520\,^{\circ}$ C) falls within the range (450–580 $^{\circ}$ C) reported ¹³ for the conversion of MnO₂ to α -Mn₂O₃. This strongly suggests, though it cannot be taken as unequivocally proved, that Mn₂O₃ is the reactive intermediate in the reactions of MnCO₃ and of MnO₂ with MoO₃. This is further supported by the finding that mixtures of MnO₂ and MoO₃ and of Mn₂O₃ and MoO₃ in requisite proportions, both lead to the formation of pure MnMoO₄ when heated in air at around 520 $^{\circ}$ C. The results of the reaction of $MnCO_3$ with MoO_3 in inert atmosphere (flowing N_2) stand in contrast with those obtained in air in that, only a mixture of Mn_3O_4 and MoO_3 , and not $MnMoO_4$, is obtained as the final product when the reaction is carried out in the absence of oxygen. The DTA curve of the mixture (Fig. 2) shows, unlike the curve obtained in air, only one endotherm corresponding to the formation of Mn_3O_4 . That there is no further reaction between Mn_3O_4 and MoO_3 is indicated by the absence of any other heat effects in the DTA curve even up to $700^{\circ}C$. ANALYTICAL X-RAY DIFFRACTION AND THERMOGRAVIMETRIC RESULTS ON THE FORMATION OF Mamoo. TABLE 2 | Atmosphere | System | Temperature | Chemical
analysis (%) | XRD d spacings | Product | % recight loss | loss | |------------|---|-------------|--|---|---|----------------|-------| | | | | for Afn and Afo
in the product ^a | 1 M (4 Old C) |) to men | Obs, | Calc. | | ii
F | MnCO ₃ -MoO ₃
(1:1) | 280-400 | | | MnO ₂ + MoO ₃ | 07'11 | 78.0 | | | | 480-600 | Mn' 25,34
Mn' 1,38
Mo 44,95 | 3.90 m, 3.58 m, 3.44 vs, 3.33 s, 3.21 m, 2.86 m, 2.71 m, 2.51 w, 2.30 w, 2.30 w, 2.50 m, | MnMaO. | 16,70 | 17,00 | | | MnO ₂ -MoO ₃
(1:1) | 480-600 | Mn ¹ 25.43
Mn ^{1V} 1.24
Mo 44.28 | same as above | MnMoO. | 7.12 | 6.93 | | | Mn ₂ O ₃ -MoO ₃
(1:2) | 900-600 | Mn ¹ 25.12
Mn ¹⁸ 1.15
Mo 44.61 | same as above | МпМоО. | 3,52 | 3,59 | | nitrogen | Mm ₂ O ₃ -MoO ₃
(1:2) | 900-005 | Mn¹ 25.34
Mn¹º 0.86
Mo 44.84 | same as above | MnM0O. | 3,49 | 3,59 | | | MnO ₂ -MoO ₃
(1:1) | 480-600 | Mn¹ 25.72
Mn¹v 0.98
Mo 44,72 | same as above | МпМоО. | 7,04 | 6,93 | | | MnCO ₃ -MoO ₃ (1:1) | 300-440 | Mnt 25,01
Mo 44,13 | | Mn ₃ O ₄ + MoO ₃ | 15,12 | 14,94 | ^a Mn^t refers to the total manganese content in the solid product. ^b The observed d spacings agree well with those reported by Corbet and Eyraud¹⁸. The intensity of the lines is denoted as vs = very strong, s = strong, m = medium and w = weak. The absence of any reaction between Mn_3O_4 and MoO_3 is further substantiated by heating separate mixtures of Mn_3O_4 and MoO_3 in air and flowing nitrogen at about 600 °C for 2-4 h. In the latter experiments, no formation of $MnMoO_4$ is detected, in contrast to the facile conversion of $MnO_2 + MoO_3$ and $Mn_2O_3 + MoO_3$ to $MnMoO_4$ under similar conditions. Thus, of the various manganese oxides, only Mn_3O_4 appears to be non-reactive towards MoO_3 at least up to 600 °C. TABLE 3 COMPARATIVE RATES OF FORMATION OF MnMoO₂ FROM MnCO₃ ± MoO₃ AND MnO₂ ± MoO₃ MIXTURES | Temperature (C) | Time
(sec) | Fraction of reaction completed | | | |-----------------|---------------|--------------------------------------|-------------------------------------|--| | | | MnCO ₃ ÷ MoO ₃ | MnO ₂ ÷ MoO ₃ | | | 500 | 300 | 0.848 | 0.33 | | | | 400 | 0.97 | 0.73 | | | 520 | 300 | 0.96 | 0.74 | | | | 400 | 0.98 | 0.79 | | | 540 | 300 | 0.97 | 0.795 | | Isothermal experiments (Table 3) carried out by heating mixtures of oxides of manganese and MoO₃ and of MnCO₃ and MoO₃ in the temperature range 500-540°C, show that MnMoO₄ is formed at a faster rate when the carbonate is used as the reactant than when manganese oxides are employed. Apparently the microscopic grain size and poor crystallinity of the freshly formed MnO₂ and Mn₂O₃ are conducive to the diffusion of Mn ions and hence the facile formation of MnMoO₄ from MnCO₃ and MoO₃ mixtures. In order to identify the diffusion process that controls the formation of MnMoO₄, marker studies¹⁶ were carried out. Pellets of MnO₂ and MoO₃ were pressed together with a thin gold wire marker in between and the composite pellet was heated at 650 °C for 30 h. The gold marker was found at the interface of Mn₂O₃ (formed from MnO₂) and MnMoO₄. The pellet gave way at the Mn₂O₃-MnMoO₄ interface while the MoO₃-MnMoO₄ interface remained intact. The results suggest that manganese ions are the main diffusing species during the formation of MnMoO₄. ### ACKNOWLEDGEMENT This work forms part of a research project sponsored by the National Bureau of Standards, Washington D.C. under contract No. NBS(G)-133. #### REFERENCES - 1 A. W. Sleight and B. L. Chamberland, Inorg. Chem., 7 (1968) 1672. - 2 F. Trifiro and I. Pasquon, Chim. Ind. (Milan), 53 (1971) 577. - 3 R. G. Brown, J. Denning, A. Hallett and S. D. Ross, Spectrochim, Acta, 26A (1970) 963. - 4 L. G. Van Uitert, R. C. Sherwood, H. S. Williams, J. J. Robin and W. A. Bonner, J. Phys. Chem. Solids, 25 (1964) 1447. - 5 R. C. Carlsion, Norelco. Rept., 10 (1963) 8. - 6 A. P. Young and C. M. Schwartz, Science, 141 (1963) 348. - 7 W. P. Doyle, G. McGuire and G. M. Clark, J. Inorg. Nucl. Chem., 28 (1966) 1185. - 8 P. S. Mamykin and N. A. Batrakov, Tr. Ural. Politekh. Inst., 156 (1966) 101; Chem. Abstr., 67 (1968) 39657c. - 9 W. G. Palmer, Experimental Inorganic Chemistry, Cambridge Univ. Press, London, 1959, p. 406. - 10 D. G. Klissurski, E. F. McCaffrey and R. A. Ross, Can. J. Chem., 49 (1971) 3778. - 11 A. I. Vogel, Quantitative Inorganic Analysis, Longmans and Green, London, 1964, pp. 297, 434, 508. - 12 F. Paulik and J. Paulik, Thermochim, Acta, 3 (1971) 17. - 13 D. Dollimore and K. H. Tonge, in G.-M. Schwab (Ed.) Reactivity of Solids, Elsevier, Amsterdam, 1965, p. 497. - 14 R. P. Westerdahl and P. J. Leader, Inorg. Nucl. Chem. Lett., 5 (1969) 199. - 15 A. J. Hegedus and K. Martin, Microchim. Acta, (1966) 833. - 16 C. Kooy, in G.-M. Schwab (Ed.), Reactivity of Solids, Elsevier, Amsterdam, 1965, p. 21. - 17 T. E. Moore, M. Ellis and P. W. Selwood, J. Amer. Chem. Soc., 72 (1950) 856. - 18 F. Corbet and C. Eyraud, Bull. Soc. Chim. Fr., (1961) 571.